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Abstract: We consider an equivalence test for a fully specfied continuous distribution on �. The
equivalence test is a powerful tool to show that observed data are sufficiently close to a given distribution.
The test under consideration is based on the time-proven Cramér-von Mises distance. We show that the
test is locally asymptotically most powerful. A consistent estimator for the asymptotic variance of the
test statistic is provided. The bootstrap percentile-t method is applied to improve the finite sample
performance of the equivalence test. A detailed algorithm for the asymptotic and percentile-t tests is
given. An extensive simulation study of the finite sample properties is performed. A practical approach
to find efficient values of the tolerance parameter is provided.
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1 Introduction

A classic problem in test theory is to assess whether observed data are compatible with a
fully specified probability measure. The common practice is to use goodness-of-fit tests
for this purpose. However, goodness-of-fit tests are tailored to establish lack of fit to a
given distribution, see Hodges and Lehmann (1954), Berger and Delampady (1987) and
Rao and Lovric (2016) for discussions on this topic. Equivalence testing is an appropriate
statistical approach to claim that observed data are suciently close to a specified distribution,
see Wellek (2010) for a comprehensive review.

Let C1 (�) be a set of continuous cumulative distribution functions (CDF’s) on � and
let G � C1 (�) denote a fully specified CDF. We assume that observed data follow an
unknown continuous distribution with a CDF F � C1 (�). Baringhaus and Henze (2017)
recently proposed an equivalence test based on the well-known Cramér-von Mises distance
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�(F, G) = � (F (x) =��G(x))2 dG(x) and provided a nice probabilistic interpretation of this
distance. Baringhaus, Gaigall, and Thiele (2018) consider, among other things, specific
equivalence tests for uniformity that are also based on the Cramér-von Mises distance.
These tests are designed for the uniform distributions on closed intervals [a, b], where the
parameters a and b are unknown.

The equivalence test problem is H0 = {�(F, G) ���} and H1 = {�(F, G) < �}, where � >
0 is a tolerance parameter. The observations X1, ..., Xn

 are independently and identically
distributed according to F, where n denotes the sample size. The empirical CDF F

n
 of X1,

..., X
n
 can be used as a plug-in estimator of the unknown CDF F. Applying the usual

normalization we obtain the test statistic T(F
n
) = ( ( , ) )nn F G� � � . The test statistic T(F

n
)

has a computationally simple form because
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� �� �� � � �� �
� ��

is the time-proven Cramér-von Mises statistic, where U
i
 = G(X

i
) for all i = 1, ..., n and U(1)

��... � U(n) are the order statistics of U1, ..., Un
.

Remark 1. Let U
n
 denote the empirical CDF of the transformed observations U1, ...,

U
n
 and let U denote the CDF of the uniform distribution on [0, 1]. The equality �(Fn, G) =

�(U
n
, U) can be shown using the substitution y = G(x) as follows:

�(Fn
(x) – G(x))2 dG(x) = �(Un

(G(x)) – G(x))2 dG(x) = �0
1 (U

n
(y) – y)2dy. Therefore, testing

equivalence to a continuous CDF G amounts to the testing equivalence of the transformed
data to the uniform distribution on [0, 1].

2. Asymptotic Optimality

In this section, we show that the asymptotic �-level equivalence tests based on the Cramér-
von Mises statistic are locally asymptotically most powerful (LAMP), see van der Vaart
(1998, Chapter 25) for an introduction to the asymptotic semi-parametric theory. Let F0 �
C1(�) be a fixed CDF such that �(F0, G) = �. Let [–�,��] � C1 (�), t � F

t
 be a parametric

sub-model for  ��> 0, such that �(F
t
, G) < � for t < 0 and �(F

t
, G) > � for t > 0. We consider

local alternatives /t n
F  for t > 0 and n ���. If the curve t � F

t
 is mean square dierentiable

at F0 then there exists an asymptotic upper bound for the power of asymptotic �-level tests
at the local alternatives, see van der Vaart (1998, p.384, Theorem 25.44). An asymptotic �-
level test is called LAMP  if its power function attains this upper bound asymptotically for
all sub-models, which are mean square dierentiable at F0. First we derive the efficient
influence function of the statistical functional F ���(F, G).

Proposition 2. The statistical functional � : F ���(F, G) is differentiable at F0 with
the efficient influence function
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�( )x�  = 2�(F0(s) – G(s)) (1(–�, s] (x) – F0(s)dG(s).
Proof. Let [–�, �] � C1(�), t � F

t
, be a parametric sub-model for � > 0, which is

mean square dierentiable at F0 with tangent h. Applying Bickel, Klaassen,  Ritov, and
Wellner (1993, p. 457, Proposition 2), we compute the derivative

( )tF s
t

�
� ( , ]1 ( ) ( )s tx dF x

t ��

�
�
� �  ( , ] 0( )1 ( ) ( )sh x x dF x��� �  at t = 0. Using differentiation under

the integral, we obtain

( , )tF G
t

�
�

�
= 2�(F0(s) – G(s)) [�h(x) 1(–�, s](x) dF0(x) dG(s) at t = 0.

By Fubini’s theorem, we conclude:

( , )tF G
t

�
�

�
= �h(x)[2�(F0(s) – G(s)) 1(–�, s](x)dF(x) dF0(s) at t = 0.

Therefore, the function �(x) = 2�(F0(s) – G(s)) 1(–�, s] (x) dG(s) is an influence function
of ��at F0. The function �(x) is continuous because

��(x + �) – �(x)� = �2�(F0(s) – G(s)) (1(–�, s](x + �) – 1(–�, s](x)dG(s)�
� 2��|F0(s) – G(s))| |(1(–�, s](x + �) – 1(–�, s](x)|dG(s)

� 2�(1(–�, s](x + �) – 1(–�, s](x)dG(s)

= 2G(x + �) – G(x))
for any � > 0. It is easy to show that ��2dF0 < �. We do not impose any additional constraints
on the CDF’s F

t
 � C1(�). Hence, the tangent space of F0 contains all continuous functions

g such that �gdF0 = 0 and �g2dF0 < � by van der Vaart (1998, p. 364, Example 25.16). Then

the effecient influence function of � at F0 is �( )x�  = �(x) – ��(x) dF0(x) because �( )x�  is the
projection of �(x) into the tangent space of F0. Applying Fubini’s theorem, we obtain ��(x)
dF0(x) = 2�(F0(s) – G(s)) F0(s) dG(s), which concludes the proof.

Proposition 3. Let c� denote the lower �-quantile of the standard normal distribution.
Let c�,n be a sequence of critical values depending on X1, ..., Xn

 such that c�,n � c in probability
for n ���. Let �2

n
 = �2

n
(X1, ..., Xn

) be a consistent sequence of estimators for the asymptotic
variance of the test statistic T(F

n
). Then the test, which rejects H0 if T(F

n
)/�

n
 � c�,n, is

locally asymptotically most powerful (LAMP).
Proof. By van der Vaart (1998, p. 384, Theorem 25.44 and Lemma 25.45),  it is sufficient

to show that the asymptotic distributions of T(F
n
) and S

n
 = �

1

1
( )

n

ii
X

n �
��  coincide under

F0. The test statistic T(F
n
) converges weakly to 2�(F0 – G)B(F0) dG for n ��� by Shorack

and Wellner (2009, p. 178, Theorem 4.4.2 ), where B denotes the standard Brownian bridge.

The statistic S
n
 can be rewritten as S

n
 = 0 02 ( )[ ( )]nF G n F F dG� �� . By Donsker’ss
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theorem,
0( )nn F F�  converges weakly to B(F0) for n ���. By the continuous mapping

theorem, we conclude S
n
 � 2�(F0 – G)B(F0) dG for n ���.

3. Asymptotic and Percentile-t tests

In this section, we provide a detailed algorithm for the asymptotic and percentile-t
equivalence tests. First, a consistent estimator for the asymptotic variance of the test statistic
T(F

n
) will be derived. The asymptotic variance of T(F

n
) is �2(F) = 4��(F(t) – G(t)) (F(s) –

G(s)) (F (min(s, t)) – F(s) F(t)) dG(s) dG(t) by Shorack and Wellner (2009, p.42, Proposition
2.2.1). An estimator of �2(F) is given in the next proposition in terms of U(1), ..., U(n).

Proposition 4. Set U(0) = 0 and U(n+1) = 1. Then �2(F
n
) = 

0 0
4

n n

klk l
s

� �� �  is a consistent

estimator of �2(F), where s
kl

 = 
min( , )

k l

k l k l
f f

n n n
� ��� �
� �

 and f
k
 = � �( 1) ( )k k

k
U U

n � �

� �2 2
( 1) ( )

1

2 k kU U�� � .

Proof. By the Glivenko Cantelli theorem, F
n
 � F almost surely for n ���.

Consequently, �2(F
n
) ���2(F) almost surely for n ��� by the continuous mapping theorem.

Using the definition of the empirical CDF we obtain:

( 1) ( 1)

( ) ( )

2

0 0

min( , )
( ) 4 ( ) ( ) ( ) ( ).

k l

k l

X Xn n

n k l X X

k l k l k l
F G s G t dG s dG t

n n n n n

� �

� �

� �� �� �� � � � �� �� �� �
� �� �� �� � � �

Let s
kl
 denote a single summand. Fubini’s theorem implies

( 1) ( 1)

( ) (1)

min( , )
( ) ( ) ( ) ( )

k l

x

X X

kl X X

k l k l k l
s G s dG s G t dG t

n n n n n
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Set f
k
 = 

( 1)

( )

( ) ( )
k

k

X

X

k
G s dG s

n

� � ��� �
� �� . By applying the substitution u = G(s), we get

� � � �( 1)

( )

2 2
( 1) ( ) ( 1) ( )

1
.

2
k

k

U

k k k k kU

k k
f u du U U U U

n n

�

� �
� �� � � � � �� �
� ��

If �(F, G) = � then the asymptotic distribution of the test statistic T (F
n
) is normal with

mean zero and variance �2(F), see Shorack and Wellner (2009, p.42, Proposition 2.2.1 and
p. 178, Theorem 4.4.2) for details. Therefore, the asymptotic test rejects H0 if T(F

n
) � c��

(F
n
), where c� is the lower �-quantile of the standard normal distribution. The asymptotic

test is LAMP by Proposition 3. The minimum value of the tolerance parameter �, for which
the asymptotic test can reject H0, equals
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1

2
min ( ) ( , ) ( )n nF F G n c F

�

�� � � � � (3.1)

The asymptotic test can be carried out as follows:

1. Given are the observed data X1, ..., Xn
, the tolerance parameter � and the significance

level �.
2. Transform the variables U

i
 = G(X

i
) for all i = 1, ..., n.

3. Compute the order statistics U(1), ..., U(n). Set U(0) = 0 and U(n+1) = 1.

4. Compute the estimator �2(F
n
) for the asymptotic variance of the test statistic T(F

n
),

see Proposition 4 for the closed-form formula.

5. Compute �min(Fn
), see (3.1) for the formula.

6. Reject H0 if �min(Fn
) ���.

In order to improve the finite sample performance of the considered equivalence test,
we use the well known percentile-t method, see van der Vaart (1998, Chapter 23). The

bootstrap samples 1
ˆ ˆ, ..., nX X  should be generated from original data by using sampling

with replacement. Let 
n̂F  denote the empirical CDF, which is based on the bootstrap sample

1
ˆ ˆ, ..., nX X . Let the data sample X1, ..., Xn

 be fixed and the bootstrap samples 1
ˆ ˆ, ..., nX X  be

random. The percentile-t method uses the bootstrap distribution of the normalized statistic
ˆ ˆ( ( ) ( )) / ( )n n nT F T F F� �  to estimate the distribution of the test statistic T(F

n
). Let ˆ( )nc F�

denote the empirical lower �-quantile of the normalized test statistic ˆ ˆ( ( ) ( )) / ( )n n nT F T F F� � .

The quantile ˆ( )nc F�  can be computed by means of the simulation to any degree of accuracy..

The percentile-t test rejects H0 if T(F
n
) ���(F

n
) ˆ( )nc F� . The minimum value of the tolerance

parameter �, for which the percentile-t test can reject H0, is
1

2
min

ˆ ˆ( ) ( , ) ( ) ( ).n n nF F G n c F F
�

�� � � � � (3.2)

The percentile-t test is consistent by van der Vaart (1998, p. 330, Theorem 23.4 and p.
331, Theorem 23.5). Consequently, the percentile-t test is also LAMP by Proposition 3.
The percentile-t test can be performed similarly to the asymptotic test, with the following

additional steps to calculate ˆ( )nc F� :

1. Generate m bootstrap samples 1
ˆ ˆ, ..., nX X  from the original data using sampling with

replacement, where m is a given number of bootstrap samples.

2. Compute the normalized test statistic ˆ ˆ( ( ) ( )) / ( )n n nT F T F F� �  for each bootstrap
sample.

3. Compute the empirical lower �-quantile ˆ( )nc F�  of the normalized test statistic.
The percentile-t test is computationally intensive due to the calculation of the variance

estimator ˆ( )nF� .
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4. Simulation Study

In this section, we study the finite sample performance of the equivalence tests by means
of simulation. It is sufficient to consider the case where G is the CDF of the uniform
distribution on [0, 1], see Remark 1. The equivalence tests are implemented in R and the
source code is freely available under https://github.com/TestingEquivalence/
EquivalenceCM. All simulations are performed in R-Studio on a scientific workstation.

4.1 Appropriate values of the tolerance parameter 

In order to shed some light on the appropriate values of the tolerance parameter �, the
power of the test is computed at the uniform distribution U on [0, 1] for the different
sample sizes n, see Table 1. The values of the power of the test 0.9, 0.8 and 0.7 are column
names. The asymptotic test is abbreviated as AT and the percentile-t test is abbreviated as
PT. All tests are carried out at the nominal level 0.05. The number of simulations is 1000
for each experiment and the number of bootstrap samples is 1000. The power of the
asymptotic test is higher than the power of the percentile-t test for sample sizes n �{50,
100, 200, 500}. The power of both tests is almost equal for n = 1000. For a given sample
size n, the value of the tolerance parameter � can be considered appropriate if the test
power at U is sufficiently high. We would set the value of � for a given n so that the test
power at U is at least 0.9.

Table 1: Tolerance parameter  as a function of the power of the test

0.9 0.8 0.7

n AT PT AT PT AT PT

50 0.0168 0.0214 0.0128 0.0131 0.0104 0.0087
100 0.0089 0.0119 0.0066 0.0070 0.0054 0.0047
200 0.0043 0.0059 0.0034 0.0037 0.0027 0.0024
500 0.0019 0.0025 0.0014 0.0015 0.0011 0.0010
1000 0.0009 0.0012 0.0007 0.0007 0.005 0.0005

4.2 Type I error rates

The type I error rates of the equivalence tests are studied in this section. The boundary
points of H0 are based on alternatives that are often considered in the literature on goodness-
of-fit tests, see Blinov and Lemeshko (2014), Lemeshko, Blinov, and Lemeshko (2016),
Marhuenda, Morales, and Pardo (2005), Rayner and Rayner (2001), Zhang (2002) and
Vexler and Gurevich (2010) among others. For this purpose, we use the beta distributions
Beta (p, q) with different parameters p, q and Stephens alternatives. The Stephens alternatives
A

k
, B

k
 and C

k
 have the CDFs:

A
k
(x) = 1 – (1 – x)k for x � [0, 1],

B
k
(x) = 2k–1xk for x � [0, 0.5] and B

k
(x) = 1 – 2k–1 (1 – x)k for (0.5, 1];
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C
k
(x) = 11 1

2
2 2

k
k x� � �� �� �
� �

 for x � [0, 0.5] and C
k
(x) = 11 1

2
2 2

k
k x� � �� �� �
� �

 for (0.5, 1],

see Stephens (1974) for details. The parameter k > 0 controls the shape of the CDF.
The construction of the boundary points of H0 is similar to Baringhaus and Henze

(2017). Let F be a CDF so that �(F, U) > �. Then the CDF of the corresponding boundary
point is wF + (1 – w)U, where the parameter w is optimized so that �(wF + (1 – w)U, U) =
�. The parameter w can be found using any line search method. Table 2 summarizes the
computed test power at the boundary points for the sample size n = 200 and the tolerance
parameter � = 0.006. The boundary points are based on the distributions in the column
Alternative. The Cramér-von Mises distance between an alternative and U is in the column
�(F, U). The asymptotic test is abbreviated as AT and the percentile-t test is abbreviated as
PT. All tests are carried out at the nominal level 0.05. The number of simulations is 1000
for each experiment and the number of bootstrap samples is 1000.

The value of the tolerance parameter � is chosen so that the power of the both tests is
larger than 0.9 for the sample size n = 200. The power of the asymptotic test varies
considerably from point to point. The asymptotic test is not conservative at some boundary
points. The power of the percentile-t test is much closer to the nominal level 0.05 compared
to the asymptotic test. Similar results were observed for sample sizes n � {50, 100, 500}.
Overall, the percentile-t test performs significantly better than the asymptotic test.

Table 2. The power of the tests at boundary points of H0.

Alternative �(F, U) AT PT

Beta(0.5, 1.0) 0.0333 0.083 0.045
Beta(0.5,1.5) 0.0732 0.091 0.046
Beta(0.5, 2.0) 0.1065 0.067 0.030
Beta(1, 1.5) 0.0119 0.084 0.033
Beta(1, 2) 0.0333 0.084 0.028
Beta(1.5, 2) 0.0089 0.069 0.061
A0.25 0.1111 0.092 0.060
A0.5 0.0333 0.089 0.053
A1.5 0.0119 0.065 0.035
A2 0.0333 0.082 0.039
A2.5 0.0556 0.086 0.046
A3 0.0762 0.100 0.048
B0.25 0.0278 0.017 0.042
B0.5 0.0083 0.034 0.052
B2 0.0083 0.038 0.062
B2.5 0.0139 0.034 0.056
B3 0.0190 0.037 0.061
C0.25 0.0278 0.032 0.056
C0.5 0.0083 0.043 0.065
C2 0.0083 0.028 0.051
C2.5 0.0139 0.023 0.049
C3 0.0190 0.024 0.050
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Conclusion

The equivalence tests under consideration can be successfully applied to assess whether
observed data are close to a fully specified continuous distribution on �. The percentile-t
test has shown good finite sample performance and should be preferred. The asymptotic
test is not conservative and should only be used when computational resources are scarce.
For a given sample size n, the efficient value of the tolerance parameter � can be found by
simulation of the test power at the uniform distribution on [0, 1].
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